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THE LIMIT ANALYSIS  AND DESIGN OF TENSION-FIELD BEAMS* 

By 

H. G. Hopkins 
Division of Applied Mathematics, Brown University 

Abstract 

The purpose of this paper is to develop theoretical 
analysis that may be applied to discuss the general prob- 
lem of the behavior of tension-field beams. The analysis 
is based upon the application of the theory of limit 
analysis to a plastic-rigid model that approximates the 
actual behavior of such a beam.  It is shown that 
Wagner's tension-field beam analysis is a special case 
of the present analysis. Apart from some brief remarks 
on the immediate steps required in the development of 
the investigation, no further discussion of the problem 
is attempted here. 

* 
The results presented in this paper were obtained in the course 
of research sponsored by the Office of Naval Research under 
Contract N7onr-35801. 
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1. Introduction. 

The general problem of the determination of the load- 

carrying capacity of tension-field beams is one of great impor- 

tance in aircraft structural engineering. These members are 

primary components in the wings and fins of many types of air- 

craft, and also occur elsewhere in sharply-tapered form as 

frames in the hulls of flying boats. Much research, both from 

experimental and theoretical standpoints, has been directed to- 

wards the better understanding of this problem. The literature 

that describes this research is very extensive.  In the following 

brief summary, the references given are intended, in the main, 

merely to be representative. 

It should be noted first that a tension-field beam 

comprises two stiff flanges which are usually parallel or nearly 

so, a thin web, and a number of stiffeners which are usually 

evenly-spaced and positioned at right angles to the flanges. 

Such a bean, regarded as a cantilever with a concentrated 

vertical shear load applied at its free end, is illustrated in 

Fig, 1. The primary function of the flanges is to carry 

compressive and tensile loads, and thereby to react the bending 

moment at a section. Again the main purpose of the web is to 

carry shear, and thereby to react the applied shear load. Lastly, 

although the stiffeners delay the buckling of the web, their most 

important function is to maintain the separation of the flanges. 

Up to the time that the web buckles, the beam may be correctly 

regarded as a conventional beam - with shear as well as bending 
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stiffness - and treated accordingly (see, for- example, [1] )? 

However, after buckling of the web has occurred the problem 

assumes a radically different aspect. Experiments made on 

typical beam designs (for which the flange stiffness is relatively 

high) show that when the web buckles it develops a series of 

waves running roughly at h0°  to the flanges, and that the overall 

shear stiffness of the beam drops at once to about three-quarters 

of its former value. Prior to the buckling of the web, the 

tensile and compressive stresses in the web are approximately 

equal; but after buckling of the web has occurred the tensile 

stress continues to increase roughly at the same rate as before 

whereas the compressive stress continues to increase only much 

more slowly. Subsequent to buckling of the web, the increase in 

applied shear load is carried almost entirely by the tensile 

stress in the web, but as before the bending moment at a section 

is still mainly reacted by compressive and tensile loads in the 

flanges. Other features appear with buckling of the web. Thus 

the flanges become subjected to distributed transverse loads 

from the web, and their tendency to approach one another under 

the action of these loads is resisted by the stiffeners in which 

compressive stresses are set up.  Moreover these transverse loads 

tend to bow the flanges between the points of stiffener attach- 

ment, and accordingly secondary bending moments, which are 

Number?? in square brackets rofor to the bibliography given at 
the end of the paper. 
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greatest near the points of stiffener attachment, are induced 

in the flanges. The web v/ouid also act on the stiffeners at the 

ends of the beam in much the same way were it not for the fact 

that in practice the beam design is almost certain to embody 

special features near its ends and these will modify considerably 

the effects just described. The buckles tend to be smoothed out 

by the flanges and also, although to a lesser extent, by the 

stiffeners. As the shear load increases the amplitude of the 

buckles grows and their wavelength decreases. Ultimately failure 

of the beam must occur, and this can happen in any one, or a 

combination, of a number of ways depending upon the detailed 

design of the beam. For example, the web may tear away from the 

rivets that attach it to the flanges; the compression flange may 

fail by instability; or the stiffeners may fail by instability 

under the compression stresses induced in thera by the web, and 

then follow the buckles in the web.  In any design that is 

satisfactory from a weight point of view the vari ous competitive 

types of collapse should occur together at failure. This condi- 

tion is quite often approximated through empirical design modifica- 

tions following tests.  In any event it is important to note that 

buckling in the web is usually very highly-developed indeed prior 

to failure of the beam - the nominal shear stress in the web at 

failure may be as much as twenty times the buckling shear stress 

of the web, and approaching the ultimate stress. 

The first attempt to treat ths post bucMing behavior 

of a beam with a thin shear web is due to Wagner [ 2 ] in his theory 

r^>-7~^-w'^"'_, 
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of the completely-developed tension field.  The immediate urgency 

of this problem was due to the progress in thp design of aircraft, 

but the general phenomena which occurred had been noted much 

earlier by Stepher.-son [3] in experiments on railway bridge 

structures. Wagner's theory assumed that as soon as the web bucklei 

it could only sustain tension, the direction of this tension 

being of course parallel to the main wave crests and troughs. 

Design experience soon showed that this hypothesis was too 

serious an over-simplication of the situation on which to base 

a really adequate analysis.  In particular the compressive stress 

in the web could not be entirely neglected. An appreciation of 

this fact marked the next stage in the development of the theory, 

and gave rise to the idea of the incompletely-developed tension 

fixed. The new theory assumed that there was a compressive stress 

in the web acting in a direction perpendicular to the direction 

of the waves, and that its magnitude was independent of the 

amount of buckling. Experiments designed to check the theory 

soon showed however that the compressive stress in the web 

continued to increase, although much more slowly than did the 

tensile stress, with the development of buckling. The inherent 

difficulty of the problem now led to the development of improved 

semi-empirical theories (see [*t] and [5]). Such theories have 

been used as a basis for minimum weight analyses (sec [6 ]). 

The task of developing a complete theory of tension- 

field beams through an analysis which treats the post-buckling 

behavior of the web according to the von Karman equations (see [7]) 
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for the large elastic deflections of thin plates has proved up 

to the present time to be too difficult a task. This is 

evidenced, for example, by the attempt of Leggett and Hopkins [8] 

to approximate such an analysis through an energy method of 

approach based upon certain simplifying assumptions. The 

theoretical results obtained by these authors were compared with 

experimental results by Crowther and Hopkins [9] . 

In the absence of a complete theory of the problem 

reliance is necessarily mainly to be made upon the approximate 

and empirical analyses based upon refinements of the analysis 

initiated by Wagner and upon empirical conclusions drawn from 

experimental observations. This is not to say that the present 

position is altogether unsatisfactory so far as conventional 

designs of tension-field beams are concerned. However the lack 

of a general theory does necessarily limit the understanding of 

the problem. 

In the present paper an alternative approach is offered 

to the analysis of the general problem which it is believed will 

*        yield useful results particularly in the important field of 

minimum weight design. Although the present discussion of the 

application of the general theory developed here is with refer- 

ence to beams with parallel flanges, this is not a necessary 

restriction (see [2 ]). The notable success of the methods of 

limit analysis and design, particularly in their application to 

barred- and framed-structures, has suggested and encouraged their 

use in the present study. A brief summary of" the literature 

         _  -,-,_# 
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available on limit analysis and design will now be given before 

we proceed to consider the analysis of the present problem in 

more detail. 

The reader is referred to the books by Van den Broek[10l 

and by Prager and Hodge [11] for detailed accounts of the methods 

of limit analysis and design together with their various applica- 

tions. Briefly limit analysis (or design) in structural engineer- 

ing may be defined as a procedure in which the analysis (or 

design) of the structure is based upon the ultimate behavior of 

the structure. Prager [12] has defined limit analysis as being 

concerned with the estimation of the load intensity at which a 

given statically-indeterminate structure ceases to be service- 

able; and limit design, on the other hand, as being concerned with 

the allocation of sufficient local yield strength to the various 

parts of the structure in such a manner that this structure 

remains serviceable under given conditions of loading. The 

basic concepts of limit design may be traced back to the in- 

troduction of ductile materials - wrought iron and mild steel - 

in engineering structures. However such concepts were only 

formalized some three decades ago. The earliest applications 

were to beams but later frames were also successfully treated. 

Following the work on extremum principles in plasticity by 

Drucker, Greenberg and Prager (see [11] ) and by Hill [13] 

considerable, and continuing, stimulus has been given to applica- 

tions to more complicated structural elements such as plates and 

shells (see [1^] ). As Hill [13] has pointed out the principles 

of limit analysis are most conveniently formulated for 

'•*•*. n .-f •-".-• 
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a perfectly-plastic material that is rigid wherever the stress 

is below the yield limit. 

The present study is usefully compared with the recent 

related work by Onat and Shield [15] and by Leth [16] who discuss 

the effect of shearing forces on the load-carrying capacity of 

wide beams and of I-beams, respectively. This comparison shows 

that similarities exist in respect of the adoption of the methods 

of limit analysis, but, on the other hand, dissimilarities exist 

in rospect of the correspondence between the actual physical 

structure and the mathematical model due to the present need 

to simulate the shear buckling of the web. 

The object of the present paper is to develop a theo- 

retical analysis that may be applied to discuss the general 

problem of the behavior of tension-field beams. The theory is 

based upon the application of limit analysis to a plastic-rigid 

model that approximates the actual mechanical behavior of such 

a beam. The difficulties in the choice of a suitable mathematical 

model arise chiefly in two ways. First there is the need to 

account for buckling of the web and the relatively small contribu- 

tion of the web compressive stress in reacting the applied shear 

load once buckling Is well-developed. Second there is the need 

to account for strain-hardening effects in the light-alloy 

material of which the beam is normally expected to be made. In 

respect of the former difficulty it is of special interest that 

a somewhat analogous situation occurs in certain problems of 

soil mechanics and in the design of masonry structures where the 

•••••.<•  /&>&: -. 
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the material is unable to take appreciable tension so that 

applied loads must be reacted almost entirely through cornpressive 

loads set up in the material. The methods of liir.it analysis have 

been successfully applied to provide solutions of problems in 

these fields on the basis of the assumption that the material is 

unable to take any tension (see [17] and Ll8 ] ).  The assumption 

of zero tensile yield stress is not essential but its adoption 

does greatly simplify the analysis with comparatively little 

loss in the accuracy of the values of the limit loads. Accord- 

ingly, as originally proposed by Wagner [2 ] , it will be sup- 

posed that the web is unable to carry any cornpressive stress. 

In respect of the latter difficulty previously mentioned, the 

effects duo to strain-hardening may be taken into account through 

an approximate, although reasonably effective, manner by the 

choice of an effective yield stress somewhat higher than the 

yield point. The reader is referred to a recent paper by 

Dwight [19] for a discussion of a plastic design method for 

aluminum structures.  It does not appear practicable to assess 

directly the error involved in making these simplifications in 

the actual mechanical behavior of the beam, and the justification 

of results founded upon the present analysis must ultimately be 

based upon experimental results. 

Finally the reader should note that the relative 

simplicity of limit analysis is due to the fact that an elaborate 

and complicated elastic-plastic analysis is avoided. Further- 

more even when exact values of the limit loads are difficult to 
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obtain, reasonably close upper and lower bounds to these loads 

may be found through the use of the limit design theorems of 

Drucker, Greenberg and Prager (see [11] )c These theorems will 

not be used in the present paper, but in sirarle terras they mean 

that the structure withstands the applied loads through the 

optimum distribution of internal stresses and that the limit 

load is reached as soon as a mechanism of collapse is available. 

The general theory that is developed here applies in 

slightly modified form also to the problem of the strength of 

composite wall structures that are composed of a mild steel 

skeleton reinforced by bricks. The modification is due of course 

to the fact that the brick cannot sustain appreciable tension 

although it will sustain compression. This application is not 

discussed further in the present paper. 1 
3 
i 

\ 
2. Notation. 

Part of the notation to be used is now described (see 

Fig. 2). Let the web be rectangular and be supposed vertical 

with one pair of opposite edges horizontal. Let the flanges be 

rectangular in cross-section, one principal axis of a cross- 

section being vertical and lying in the plane of the middle sur- 

face of the web. The stiffeners are supposed vertical, at 

constant pitch and symmetrically attached to the web. Let 0(x,y) 

be a rectangular Cartesian frame of reference in the middle surface 

of the web, the x- and y-axes being horizontal and vertical, 

respectively,  L<;t 

<l,d,t = web length, depth and thickness; 

• ' *•••••   '•;  ' • .*.    -*:•.. m« 
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2a,b = depth and width of flange cross-section; 

d_ = tensile yield stress; 

F,Q,M = axial and shear forces, and bending moment in flange; 

U
P»
V

T? 
= vclocity components in neutral axis of flange; 

d , d , x  = stresses in web averaged across thickness; 
x' y7  xy 

v ,v = velocity components in web averaged across thickness; and 
x y 

e ,e ,Y  = strain components in web averaged across thickness. kX'*y»TXy 
Other notation is defined when first introduced. 

3. Preliminary Analysis. 

It is convenient, before proceeding to the detailed 

analysis of the flanges and the web, to describe the general 

approach which follows closely that developed by Prager (see [20] 

and [2l] ). 

The mechanical behavior of a perfectly-plastic rigid 

continuum is specified in terms of independent generalized strain- 

rates et and stresses d^i = 1,2,...,I), these quantities being 

associated in such a way that the rate of plastic work per unit 

volume is 

W = d, e •. e-i + d oep + •••• + ^TeI* (3.1) 

The generalized strain-rates are derived from generalized veloci- 

ties v1 (j = 1,2,...,J) which specify the type of plastic flow 

envisaged and reflect the basic klnematical assumptions of the 

theory.  In general once the v.'s are assigned and the o »s have 

been determined, the d^s are best found from considerations of 

-•r;.v~:.- >.'^j ~- 
• .- 
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virtual work. The e^'s may always be- modified in such a way to 

have the same dimensions as, for example, conventional strain- 

rates.  The same applies to the d.'s.  Indeed if e^ is modified 

to e^/Cj, where c. is some constant, then o. must bo modified to 

ci(,i » if W is to remain unchanged. This modification is essen- 

tial if, as is often convenient, the e^'s and d^'s are to be 

regarded as the rectangular Cartesian co-ordinates of points in 

I-dimensional strain-rate and stress spaces. Further the points 

ej and d^ , and hence the states of strain-rate and stress, may 

be associated with the vectors, say e and d respectively, having 

their initial points at the origin and their terminal points at 

e, and d., . Moreover it may be convenient to superimpose the 

strain-rate and stress spaces in which case all e.'s and d.'s 

must be chosen so as to have the same dimensions.  In the 

absence of effects such as strain-hardening, viscosity and inertia, 

no fundamental time is involved in the problem, and accordingly 

the velocities are only determinate to within an arbitrary con- 

stant factor of proportionality. 

The physical laws involved in the problem are those of 

equilibrium; plastic flow without fracture or, within a rigid 

(elastic)region, strain compatibility; and mass conservation. 

These laws are just sufficient to provide the necessary set of 

mathematical relations on the unknown field quantities and either 

the external forces or the geonetry according as the problem is 

one of analysis or design. The physical laws provide not only 

field equations and boundary conditions but also certain funda- 

mental requirements in respect of continuity on field quantities. 
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The equations of equilibrium involve both internal 

and external stresses, Any internal stress vhich does not 

explicitly occur in W may be associated with a strain-rate that 

is identically zero. Such a stress is called a reaction. The 

actual deriv&tion of the equations of equilibrium is standard. 

The yield condition is expressed by 

fCo^o,,,...,^) = o (3.2) 

where the yield function f assumes negative values for stress 

states below the yield limit.  In the simplest case f is every- 

where continuously differentiable with respect to the d^'s, i.e. 
r 

the yield surface has everywhere a continuously-turning tangent 
I 
' plane, and f is called regular. Otherwise the yield surface is 
1 
| called singular, and points where all the-~'s do not exist are 

called singular points. Note that, although it is convenient 

to use geometrical language, expressions such as 'yield surface' 

must be interpreted appropriately in any particular context. 

The most important example of a singular yield surface occurs 

when the (closed) yield surface S comprises a finite number of 

(open) regular surfaces Sr(r = 1,2,...,R) so that singularities 

may occur only at the intersections of the S 's. This situation 

arises when more than one physical mechanism is available to 

admit plastic flow at certain stress states.  In such a case the 

yield limit Eq.(3.2) is expressed in terms of a finite number of 

SET • ..... ^JJSS^Sfe 
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continuously differentiable yield functions 

fr(o1,<J2».*.,<JI) (r = 1,2,.. ,,R) (3.3) 

where all the f 's assume negative values for stress states 

below the yield limit, and at least one f is zero with no f 

positive for stress states at the yield limit. Except perhaps 

at the boundaries of the S 's there is always a well-defined 

outwards-drawn unit normal n(nj) to S where 

n, oc -J- (i = 1,2,...,I); (3.*0 

and, at a singular point of S, n is defined by 

afw ni a 2 a_ —£ (i * 1,2,...,I), (3.5) A   r     "i 

where the a 's are non-negative and not all zero, with the sum- 

mation extending over all values of r for which Sr passes through 

the singular point in question. Relations (3.1*-) and (3.5) 

coincide at regular points, and the latter are taken as an 

extended definition of n that applies at all points. 

The general problem of the determination of the actual 

form of the yield function is not discussed here, but in many 

important cases of practical interest the procedure is relatively 

straightforward. A fundamental requirement is that the yield 

surface is everywhere concave towards the origin. However once 

f is ?'--nown the formulation of the flow rule on the basis of the 

theory of the plastic potential due to von Mises is immediate. 

• ' .v. '>•.  \'>       ':—   - • 
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This theory demands that, for plastic stress states, the plastic 

strain-rate vector and the outwards-drawn normal vector to the 

yield surface at this stress state have the sane direction. 

Otherwise the plastic strain-rate vector is identically zero. 

Thus 

e = 0  wherever either f < 0 or f = 0 and f < 0, 

e = \n wherever f = f• = 0 (X > 0), 
(3.6) 

\ being a function of position indeterminate to the extent of a 

constant multiplicative factor. It is unnecessary to give 

explicit attention to the conditions on f (the prime denoting 

time differentiation) because these are automatically satisfied 

as the incipient stress field at collapse is supposed independent 

of time at least to a first approximation. Equivalently, the 

relations (3.6) are expressed through the relations (3.^) and 

(3.5) in the forms 

e±  = 0 wherever either f < 0 or f = 0 and f' < 0, 

e, =\-M~ wherever f = f = 0 (X > 0), 
9(Ji 

>(i=l,2,...,I), 
r        (3.7) 

for a regular yield surface, and 

ei = 0 wherever either f < 0 or f = 0 and f • < 0 (r=l,2,,,. ,R), 

e< = X 2 a —£ wherever f =f' =0 for at least one r 1   r r da± * r 

( X> 0; a„ = 0 if either f < 0 or f =0 and f • < 0, and 
*• ' r r       r        r   ' 

a > 0 if f = i*1 = 0), 
r -     r   r 

(1-1,2,..,1),(3.8) 

fe^-'^V' 

:^^ 
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quite generally for a singular yield surface.  In relations (3.8) 

the a * s are otherwise completely arbitrary, and variations in 

their ratios correspond to different combinations of plastic 

flow mechanisms. 

Plastic-rigid material is incompressible, and hence the 

density is constant.  It follows that the physical law of mass 

conservation is expressed in terms of a continuity condition 

involving only velocity components. The present theory is not 

applicable to problems of fracture. For our purposes fracture 

may be defined as severe local plastic deformation resulting in 

the formation of new surfaces to the body. Care is needed to 

distinguish between deformations which are properly regarded as 

being within the scope of plasticity theory and deformations 

involving fracture which are strictly outside the scope of this 

theory. Even so plasticity theory is commonly applied to the 

analysis of problems which involve either highly-localized regions 

of fracture or incipient fracture, and this practice extends 

considerably the application of the theory. 

finally it is necessary to introduce certain definitions 

in respect of discontinuities of field quantities. A surface T 

of isolated discontinuity is said to be of order n(> 1) with 

respect to the field quantity $>, If ? together with all its 

space derivatives up to and including those of order n-1, but 

not all derivatives of order n, are continuous across T.  If the 

discontinuity effects 3" itself then it is said to be of order 

zero. The basic field quantities are of course Vj,<j, and X. 

...• . ^. ;•"• m 
" "••• &$*& av* M 



All-llW 17 

* at 
-' 
w-.V 

...» 
B • 

!  ' 
•. ... mm 

•' 

On each side of T the various field quantities are related by- 

equations, either differential or finite in nature, valid at all 

points. For example, there are the differential equations of 

equilibrium and the yield condition all involving the generalized 

stresses.  In what follows it is to be understood that all equa- 

tions are fundamental, and not derived, in the sense that they 

express the various physical laws in the simplest possible manner. 

Then with respect to T and each 3 > a weak discontinuity has an 

order not lower than the order of the highest derivative of 3> 

occurring in the physical equations.  Otherwise the discontinuity 

is called strong, and is a contact discontinuity.  If the material 

in the immediate neighborhood remains rigid then there is said 

to bo localized plastic flow. The above definitions need to be 

extended when the time enters explicitly into the problem. 

Further any (virtual) discontinuity is called natural or artificial 

according as the physical equations do or do not remain valid in 

its immediate neighborhood.  Note that if there is a dis- 

continuity in 3" across T then it is properly to be regarded as 

the limit of a continuous distribution of jt which changes by a 

fixed amount across a narrow region enclosing T as this region 

everywhere shrinks up to T. 

h.    Analysis of the Flanges. 

The flanges arc treated according to a simple engineer- 

ing theory of perfectly-plastic rigid beams, i.e. the flanges 

are approximated by one-dimensional continua. The relation be- 

tween the present approximate theory and the exact theory is 

WZ 
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reasonably conjectured to be much the same in plasticity as it 

is in elasticity. Exactly as in elastic beam theory, transverse 

shearing deformations being neglected, the fundamental kine- 

matical assumption is that a cross-section of a flange initially 

normal to the neutral axis remains normal to the deformed neutral 

axis.  If u• and v-, denote the axial and transverse velocity 

components of particles lying on the neutral axis, then the rate 

of extension e and of curvature x of the neutral axis are given 

by 

dUr, d2v. 
e = 

dx 
X = 

dx' 2 * Of.l) 

Let F, Q and M denote axial force, vertical shear force and 

bending moment. Then the rate of plastic work per unit length 

of flange is 

W = F e + M x . 

dvz 

Of. 2) 

Hence F, M, e , x, u_ and -r-^- are corresponding generalized stress, 

strain-rates and velocities, and Q is a reaction. 

It is simple to establish certain general conditions 

of continuity on the fundamental field quantities F, Q, M, up 

and vF. The equilibrium of an elementary slice of a flange 

enclosing an arbitrary fixed cross-section shows, when the 

thickness of this slice is made to tend to zero, that F, Q, and 

M are continuous. The law of mass conservation applied to the 

same slice, remembering that the density is con&ant and that 

'•: 
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finite changes in the flange cross-sectional area would involve 

fracture, establishes that Up is continuous. A discontinuity in 

v_ when properly regarded would correspond to large transverse 

shear strain-rates within the elementary slice.  Inasmuch as the 

effect of transverse shear strain-rate is completely ignored in 

the present theory, it is accordingly necessary for consistency 

to assume that v„ is continuous. Thus at all cross-sections, 

[F»Q»**»VVF J= °» Of .3) 

the square brackets denoting discontinuity of the enclosed 

quantity. The sign conventions for the quantities introduced 

above are shown in Fig. 2. 

The forces acting on an  elementary slice (of length 

6x) of the upper flange are shown in Fig. 2.  It follows that 

the differential equations of equilibrium are 

dM _  0 
dx    H - 0, 

(>f.5) 

Of.6) 

the upper flange lying along the line y * id. Similar equations 

apply to the lower flange. Here, for simplicity and with little 

resulting loss in accuracy, the offset of the web edge from the 

flange neutral axis is neglected; this involves the omission of 

a term - &t(.T     )    ±*  from the left-hand-side of Eq.(*+.6).  If 

there is a distributed downwards-acting load p per unit length 

'••-.. • 

. 
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of flange, then a term +p must be added to the left-hand-side 

of Bq.(^,5). 

As established by Onat and Prager [22 ], the critical 

combination of F and M admits full plasticity at a cross-section 

corresponds to stress distributions over a cross-section in which 

axial fibers are at the yield stress either in tension C+cO or 

jn compression (-6 ).     It is straightforward to determine the 

form of the yield functicn(s) for any shape of cross-section. 

For example, in the case of a rectangular shape to which attention 

is confined here, the yield limit is expressed in terms of two 

yield functions, viz. 

f-L = F2/F0
2 + M/M0 - 1, 

f2 = F
2/Fo

2 - M/MQ - 1, (^.7) 
> 

where 

?o s 2abdo > Mo = »' b<* 

Here F and K are the limit axial force and moment in pure 

extension and bending, respectively. As will be seen in a 

moment the converse statement is not necessarily true.  In 

proceeding it is necessary to modify the generalized stresses 

to F/F0 and M/MQ , and the generalized strain-rates to FQ e 

and M x . The corresponding generalized velocities can be taken 
dvT 

as F0uF and M, 0 T-£ (assuming that FQ and MQ are constant) so 

_ d dvw. 
that F0 e = ~ (F0Up) and MQ x = ^ (MQ g~r-)» but these quantities 

are not explicitly required in this form. Then in the correspond- 

ing stress plane the yield locus is represented by two parabolic 

- 

.•?• 
- -T-V--- 
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arcs (ABC and CDA in Fig. 3) with singular noints only at their 

common points (A and C). The flow rule is given by the follow- 

ing relations. 

ffegime Fo Mo Conditions 

A 2\ -(l-2q)X F/F0=l,  M=0;  0 < q < 1 

ABC 2\F/F0 X - 1 <  F/FQ  <    1,     M >0 

C -2\ (l-2q)X F/FQ=-1,   M=0;   0 ^ q  < 1 

CDA 2\F/FQ —1\ -1 < F/F0  < 1,   M < 0 

(>:.8) 

The quantity X(x) is non-negative, and variations in q(x) 

correspond to different combinations of the admissible plastic 

flow mechanisms at a singular point. 

The law of mass conservation does not yield any further 

information that is directly relevant to the solution of the 

problem.  It determines only the rate of change A1 of cross- 

sectional area, 

A1 = - As. (^.9) 

r 
i. 

t 

The solution of the problem, so far as the flanges 

are concerned, must satisfy the continuity solutions (^.3)> the 

equilibrium equations (Lf.lf)-(lf.6) and the flow rule (*f.8). Note 

that the matching of the solution obtaining in either rigid or 

plastic regimes, i.e. at rigid-plastic or plastic-plastic inter- 

faces is achieved through the continuity relations. The solu- 

tion, if it is to be strictly within the present framework, will 

iffr 

—_—__. 

•• •-••'' 

.-* 
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not admit discontinuities in F,Q,M,uF and vp. 

Finally it remains to discuss the general question 

of discontinuities in the field quantities. The highest 
dv- 

derivatives of FJQJMJU^ and •*-*- that occur in the physical 

equations are of the first order. A weak discontinuity in these 

dF quantities is now considered. First a discontinuity in ~~ and 

|» involves discontinuities in (T:    )    i^  and (d )  I^ , 

respectively, and must therefore be discussed later when the 

analysis of the web has been completed (see p.h-6),    A dis- 

continuity in 4^ involves a discontinuity in Q which violates 

one of conditions (*+.3), and is not admissible. Secondly dis- 

continuities in e and x can occur only either within or at the 

boundary of a plastic regime. Then, remembering that F is 

continuous, the following results are found from the flow rule. 

(*f.lO) 

Rogime LF0eJ LMQxJ 

A 2[XJ -L(l-2q)\J 

ABC 2(F/Fr)[X] o O] 
C -2[\] £l-2q)X] 

CDA 2(F/F0)(X] -[X] 

Here [e] and [x] are supposed not both zero, and the results for 

the three distinct cases follow immediately and are tabulated 

below. 

._-___ 
.- .'•- -.. ' . 
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M CK] Regime Conditions 

7*0 7*0 ABC,CDA 

A,G 

F,[X] 7*0 

F>[X] 7*0 , [(l-2q)Xj7*0 

to 0 A,C [X] tO  , [(l-2q)\]= 0 

0 to B,D 
• 

A,C 

[X] 7*0 

[X] = 0, [l-2q] & 

Of.il) 

IK***" * 

*M • 

I 

{ 
I l ' 

r. , 

Thus if either regime ABC or CDA applies then discontinuities in 

axial strain-rate and curvature-rate must occur together and are 

not independent, save when there is zero axial force in which 

case no discontinuity is permissible in axial strain-rate al- 

though a discontinuity is permissible in curvature-rate5 and if 

either regime A or C applies then discontinuities in axial strain- 

rate and curvature-rate may occur separately or together. At 

first sight the behavior in regime A or C may appear rather 

surprising, but it is simply explained by the fact that if all 

axial fibers at a section are stressed to the tensile or compres- 

sive yield stress it does not follow that there is constant axial 

velocity across the section - the distribution of nxial -velocity 

is only required to be a continuous linear function, either 

uniformly positive or negative, of the distance from the neutral 

axis, and hence bending as well as extension may be accommodated. 

This completes the discussion of weak discontinuities. 

Next consider strong discontinuities. A discontinuity 

in F,Q or M violates equilibrium, and is therefore artificial. 

••''•'•.-•••••.:• - ~ '- • 
«t«9S 
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Such discontinuities are not considered. Discontinuities in 
dv F Up and -T~- cannot occur within a rigid regime but may occur 

elsewhero. Here [up ] and [gjr-] are not both zero, and hence 

one of e and x becomes very large within the elementary slice. 

Now F remains continuous, and hence \ becomes very large within 

the elementary slice.  Let 

I = lim J \(x)dx (>0), J = lim  <l-2q(x) V \(x)dx (-1 £ J <; + I), 

0+.12) 

the limits being taken as the thickness of the elementary slice 

is made to tend to zero. The following relations now follow 

through integration of the flow rule. 

1 ' 

Regime [F0up] 
dVT?i [Mo3T] 

A 21 -J 

ABC 2(F/F0)I I 

G -21 J 

CDA 2(F/F0)I -I 

(**.13) 

The results for the three distinct cases now follow immediately. 

[F0uF ] 
dv• 

Regime Conditions 

£0 A o ABC,CDA 
- 

A,C 

F A 0 
i 

J A 0 

*o 0 A,C J  = 0 

0 A 0 B,D MM 

C+.i^f) 
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Thus if either regime ABC or CDA applies then discontinuities in 

axial velocity and angular velocity must occur together and are 

not independent, save when there is zero axial force in which 

case no discontinuity is permissible in axial velocity although 

a discontinuity is permissible in angular velocity, and if either 

regime A or G applies then a discontinuity in axial velocity 

always occurs and may also be accompanied by «.n independent dis- 

continuity in angular velocity. These discontinuities are 

classified in the following way. First if [F0Up ] = 0   and 
dvp-. 

[ MQ x~*.M 0 then the discontinuity is immediately recognized 

as corresponding to a 'yield hinge' long familiar in the plastic 

analysis of beams.  Second if [F0Up ] ^ 0 and [MQ ^-] A  0 then 

the discontinuity is called an 'extensible yield hinge', and 

was first introduced by Onat and Prager [22] .  Last if 
dv 

dx 
called an 'extension'.  A discontinuity in axial velocity in- 

[F0uF ] £  0 and [M0 2lH ] =0 then the discontinuity is simply 

volves very high rates-of-change of cross-sectional area for 

i limj A' dx = - [up ] , (M-.15) 

the limit being taken in the usual way. This situation corres- 

ponds to incipient fracture simultaneously with plastic flow, 

and is accordingly not strictly admissible within the framework 

of the present theory.  Moreover, if discontinuities occur in 

either axial velocity or angular velocity then high rates of 

strain of axial fibers must occur.  The present theory does not 

take account of such effects.  Accordingly it must be expected 

that viscous effects will immediately serve to modify such sharp 

discontinuities.  Moreover effects due to inertia and strain- 

 —.—,-   v_^__,— 
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. 
hardening will soon become important at such a section.  In a 

general way the discontinuities will be spread out rapidly over 

a small length of the flange. The discontinuities are artificial, 

but nevertheless analysis within the present framework may 

reasonably be expected to furnish a sufficiently adequate 

description of the actual mechanical behavior except in the 

immediate neighborhood of such discontinuities. 

5. Analysis of the Web. 

The web is treated according to an approximate theory 

of plane stress for a hypothetical material which is unable to 

support compressive stresses. Thus the web is approximated by 

a two-dimensional continuum. So far as the assumptions of 

plane stress are concerned, the relation between the present 

approximate theory and the exact theory is reasonably conjectured 

to be much the same in plasticity as it is in elasticity. The 

generalized stresses are the mean (i.e., thickness averaged) 

stresses d x> xy , and the corresponding generalized strain- 

rates are the mean strain-rates ev, e , Y„„. • If v-r and v„ x' y'   'xy      x     y 

denote the components of mean velocity then 

ax ' ey K "3y » Yxy ax 
av. 
ay 
X (5.1) 

The forces acting on a small elementb x x by x t are 

shown in Fig. 2, The differential equations of equilibrium are 

therefore 

adj 

3x" 

9<cxy =  0 
dx xy 
ax 

ady  « 
ay (5.2) 

— — • . . 
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The rate of plastic work per unit area of middle 

surface is 

V = t(dxe^ + dyBy +TxyYxy). (5.3) 

The principal stresses are denoted by 0 ]_ and d2> and 

are distinguished through the choice 

d-. .> C5p • (5A) 

In the case of equality in condition (5-*0 there is stress 

isotropy.  If 9 is the anti-clockwise rotation of the d, - and 

d2 - directions from the x - and y - axes, respectively, then 

1   x   y x  '  2   x   y    7 

cos 29 = (dx-d )/r , sin 2 9 = 2TXj/
r * > 

r = + {<vV +lfTxy V- 
(5.5) 

(a> is of course only determinate to within a multiple of rc), 

and conversely 

2 p 
dx = cos 9 d-i + sin 9 d_ , 

2        9 
d  = sin 9 d-, + cos°9 d2 > 

TXV = |sin2(j)(d1 - d2). (5.6) 

The yield condition is required to express the fact 

that the material will not sustain pure conpresion and may yield 

- •_ •••-"" T"T7' 
__  
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when either principal stress achieves the yield stress d0 in 

simple tension. Hence the yield condition restricts d and dg 

to lie either between or at the values 0 and d0 , i.e., within 

the square ABCD (see Fig. h)  drawn in a stress plane in which d^ 

and do are taken as rectangular Cartesian co-ordinates. However, 

remembering the condition (5.^), only the triangle ABC is 

strictly relevant. 

The yield curve ABCD is imagined folded about the 

diagonal AC, and consists of the lines AB and BC each described 

twice.  The diagonrl AC, its end points being excluded, is not 

part of the yield curve. Accordingly there are two regular 

plastic regimes AE and BC, and three singular plastic regimes 

A,B and C. Thus the yield condition is expressed in terms of 

two yield functions, viz. 

-d0, f2 * 61   - dQ , (5.7) 

i 
- 7.     . 

y 

J 

J 
. i 

i 

'' '• '••] 

subject of course to condition (5.^). This yield condition is 

also simply expressed in terms of the stresses d , d and T 

as follows. Now for the regimes A, AB and B, 0 <; d_ < dQ and 

d. =0 ; and for the regimes B, BC and C, <3-±  = and 

0 < dp < d  . Then from Eqs.(5.5) and (!?s7), 

r = [ a     +  d for regimes A, A3, B,  j 
)    x   y ^ 

(dn~dv) + (cW  for reSimes B, BC, C, 

and hence 

(5.8) 

• '- :.. • 
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(Jd0 -dx)(jd0 - dy) =T
2
xy , 

where 

J = 0 for regimes A, AB, B, 

1 for regimes B, BC, C.J 

(5.9) 

Note that regime E is characterized by either value of j. 

If f denote the yield condition then the flow rule is 

expressed by 

ax-7 fe - v^ ~ 5(3T + ^vefe: = Xv^y) 2 °' °' xy 

the first order partial differential coefficients of f being 

given the usual freedom of interpretation at singular points. 

The law of mass conservation determines the rate-of- 

change of the web thickness, or, equivalently, the mean trans- 

verse strain-rate e„, in terms of e„ and e * z' x     y 

t» = tez = - t(ex + ey). (5.11) 

The set of five equations (5.2), (5,9) and (5.10) in 

the five unknowns 6y  , d , xv    , v and v form the basis for 

the determination of the stress and velocity fields in the plastic 

region.  Note that the first three of these equations involve 

only the stresses. The other equations involve the stresses and 

the velocities, and are homogeneous in the latter. 

In the rigid (elastic) region the equations of 

equilibrium remain the same, but now the strain-rates all vanish 

identically and the yield condition is replaced by the requirement 

,(", '< * ' -r. 
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of compatibility, 

Q2    g 
(—*• + —?)(d„ + d„) - 0. (5.12) 

The set of three equations (5.2) and (5.12) in the three unknowns 

d  , d and T  form the basis for the determination of the 

stress field in the rigid (elastic) region. 

It is necessary to establish certain conditions on the 

field quantities at the plastic-elastic interface. Let the 

interface be a simple open curve V  with everywhere a 

continuously-turning tangent except perhaps at a finite number of 

isolated points. Let the normal and tangential directions to T 

be denoted by increasing values of local rectangular Cartesian 

co-ordinates n and s, respectively. The equilibrium of a small 

rectangular-shaped volume 6s x 6n x t shows, as the thickness 6n 

is made to tend to zero, that the normal stress dn and the shear 

stress Tnsare continuous, but that the tangential stress d^. need 

not be continuous (see Fig. 5). The law of mass conservation 

applied to the same volume, remembering that the density is 

constant and that finite changes in the web thickness would 

involve fracture which is here excluded, establishes that vn is 

continuous but that v may be discontinuous. Thus 

£dn»*ns' vn]=0 (5.13) 

»*••• 

!.: 

t 
I 
I 
\ 
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across a plastic-elastic interface, but d and v may be dis- 
s     s 

continuous across such an interface. 

,•••••.•• 
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It will be established later that the directions of 

principal stress at any point of a plastic stress field are 

mathematically-preferred directions. This fact at once focuses 

attention on the field of principal stress trajectories as the 

fundamental unknown element to be determined in the solution of 

the problem. Let the two orthogonal families of lines of 

principal stress be identified through the orthogonal cur/vilinear 

co-ordinates a and p.  Hence a(x,y) and p(x,y) are supposed 

continuously differentiable functions such that 

iS i§ a. la 3J3 _ n 
3X ax  5y 3y " u* (5.1*0 

A member of one family of principal stress trajectories is then 

defined by an equation P = const, and is called an a-line; and 

similarly a member of the other family is defined by an equation 

cc = const, and is called a p-line. The two families are dis- 

tinguished through the choice 

d_= d 
a= 

di , dp =d2 (5.15) 

Note that the lines of principal stress are not uniquely deter- 

mined in the case of stress isotropy, e.g. when regime A or C 

applies throughout a region. 

The fundamental equations will now be developed in 

terms of the geometry of the a,£ - co-ordinate system (see Fig. 

6), kef: i{s(ct;fi) be the angle made oy  the tangent to the a-line 

through the point P(a,0) with a fixed direction; and let 

ha(a, p)6a and hg(a, P) 6{3 be the elements of length on the 

»;.v _ 

' -•••• •  •. 
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fe 

a- and p-lines, respectively. Let x„ and KQ be the (algebraic) a     p 
curvatures of the a- and p-lines, and be defined by 

"  Pa   ha aa ' a XP = P", 
1 H (5.16) 

Jp  "p aP 
Simple geometry applied to the quasi-rectangular element PQRS of 

Fig. 7 shows that 

eh. a Oh, 

ap = h_h„H a p a ' aa = hahpxp- (5.17) 

Further since |-J- = OL. it follows that the curvatures are 

related through the condition 

8K- 
+ 5£- h^h^fe^a + «p 2 = 0. (5.18) 

Let va and v« be the components of velocity in the 

directions of increasing a and p, respectively. Then it is 

easy to show that the corresponding strain-rates e , sQ, v « are aT  p7 "ap 
given by 

9va 3vft 
+ K„va , eR «= vr-fe + MQV. ea " ha3a 

3v 
*a"p • ep "  hj^p + *pva » 
av_ UVQ dva 

a*o 
Kpvp ' 

(5.19) 
Yap haoa 

+ hpdp7 

The forces acting on a small element h 6a x h0*8 x t a     p r 

are shown in Fig. 7. The differential equations of equilibrium 

ft -.-.f. ^ .-..-..-,,-. i5 4«,>1i 

•5(Va) " haVpdp = ° • ^(h«V " hahpVa = °'  (5'20) 

and after use of Eqs.(5.17) these equations take the form 

M3« .*.--  * > 

i 
TTTV _* -T 

- • 
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3d( 

- + ha*p<VV  = ° '   of + hpHa(drda) = °« (5'21) 

The rate of plastic work per unit area of middle surface is 

W = t£aea +dpe ). (5.22) 

The yield condition is given by replacing o  and dp 

by 6 a and do respectively, i.e. 

fl = _dB ' f2 =da (5.23) 

In an isotropic material the principal axes of stress and plastic 

strain-rate must coincide, i.e. 

\r° (5.210 

throughout the plastic region. This condition imposes a very 

severe condition on the velocity field, Apart from relation 

(5.2*0 the flow rule is given by the following relations. 

Regime 
r 

6P Conditions 

A -(1-qfc -qX "a   = *B ^ 5  * * q <. 1 

AB 0 -X 0<   da <(iQ ,  dp = o 

3 qX -(l-q)X da     =<,o»dp=0?°^<l^]L 

BC X 0 da     =d0  ,  0<    d6 <dQ 

C (l-q)X qX da     =<>p   ="o  5  0 1 q 1 * 

(5.25) 

Here X(a, B) is non-negative and q(cc, B) is subject to the stated 

inequalities, but otherwise these quantities are unrestricted as 

yet. 
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The equation of continuity is 

1 8vn   T  9v, 
^ ZLSk 
ha 3a + — TTT  + xQv„ + X(xvp = - e. - 

t' 
t • 

(5.26) fa  "a'p    &z 

The set of six equations (5.18), (5.21) and (5.23)- 

(5.25) in the six unknowns d , dg, x , xa, v and Vg form the 

basis for the determination of the stress and velocity fields 

in the Dlestic region.  Note that the first four of these equa- 

tions, viz. Eqs.(5.l8), (5.21) and (5.23) involve only the 

quantities da, dg, x  and xR.  The other two equations involve 

the velocities and are homogeneous in these quantities. 

In the rigid (elastic)region the equations of equi- 

librium remain the same, but now the strain-rates all vanish 

and the yield condition is replaced by the requirement of 

compatibility 

{^•fe>+^i)}(0a^p)=°-      (5-27) 

The set of four equations (5.18), (5.21) and (5.2?) form the 

basis for the determination of the four unknowns d , dft? xaand 

Xg throughout the rigid(elastic) region. 

An essential preliminary to devising methods of in- 

tegration of the plastic equations is to determine their 

mathematical nature.  The rigid (elastic)equations are of course 

elliptic in type. Suppose that the stress and velocity fields 

are known throughout the plastic region bounded by a simple 

closed curve P (see Fig.  8). For simplicity it is assumed that 

T has everywhere a continuously-turning tangent,, but this 

- 

"«-•••... • .-f       •>-. . 

- . < • 
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condition may easily be relaxed to the simpler assumption that 

r is composed of a finite number of arcs with the above property. 

Let P be a typical point of P ; and let n and s denote local 

rectangular Cartesian co-ordinates with origin P, the directions 

of increasing n and s being along the outwards-drawn normal and 

positive tangent to P.  In what follows we shall consider the 

set of equations found by replacing x and y by n and s , 

respectively, throughout Eqs.(5.2), (5.9) and (5.10). The form 

of the physical equations is of course unaltered by the choice 

of this new system of co-ordinates. 

Now the values of the components of the stress and 

velocity fields (satisfying the plastic equations) are known 

throughout the interior of P. Hence the values of these 

quantities together with their partial differential coefficients 

of all orders - the data being supposed analytic - are all 

known inside T. We now ask if the known data just inside T, 

together with the supposition that the region just outside P is 

plastic, is sufficient to determine uniquely the corresponding 

data just outside T.  If this is so then the the known solution 

inside P may be continued a small way into the region outside 

P, and so on.  If this is not so, save when additional data 

are assigned, then T will be a characteristic. The characteristic 

condition corresponds of course to the situation when the field 

quantities together with their normal and tangential derivatives 

are not necessarily all continuous across T.  In other words 

different analytic solutions of the plastic equations can only 

- • 
» 

- -- 
V 
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touch along a characteristic, and the contact may be of any 

order, 

First note that the results (5.13) apply to T, i.e. 

d , x and v are continuous across T , but d  and v may be n ' ns    n '     s     s 
discontinuous across P , The values, say of <ja • just inside 

and just outside V  will be denoted by d  ~ and d + <•   respectively; 
s       s  ' 7 

and the discontinuity measured positively outwards across V , 

i.e. a   ' - d ~, is denoted by [d„ ]: and similarly for other 

quantities, 

a) The stress equations. 

The stress equations will be considered first. The 

yield condition (see Eq.(5.9)) 

2 
(j0o -0n)U<5o -d ) =T ns (5.28) 

applies  on both sides of   P,   and hence as t      is  continuous 

[(jd0  - <3n)(jd0 - ds)] = 0. (5.29) 

The analysis now proceeds differently according as the same 

value of j does or does not apply on both sides of T. 

Case (i) t  .1" = .1+(= .1). Equation (5.29) shows that 

(dn - *>o)[<U = 0. (5.30) 

!<;.- \ 

• •••' I 

Now if the regime be either A or C, so that there is a homo- 

geneous isotropic stress field, then nothing more remains to be 

said. Attention may therefore be confined to regimes AB, B and 

BC. Then dg is continuous if dn £  jd0 but is not proven contin- 

uous if 

• 
--  , , , -. ..••* .-.•-• : : "V.  • JSF ""-<•'•   5-*% TTfs* T 
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dn = U0 (5.3D 

when T  =0 and hence d and d are principal stresses, 
ns n     s 

Suppose for the moment that there are strong dis- 

continuities in the stress field so that Eq,(5.3D applies. 

Therefore if the regime is AB or BC then P must be an a- or a 

3-line, respectively; and if the regime is B then V must be 

either an a- or a B-line. The stresses dn and %       , together 

with their tangential derivatives --—  and g  • , are continuous 
3K        CS 

across r. The equations of equilibrium (see Eqs.(5.2)) 

^n , 9<%s  n      9^ns , 0ds  _ (<?  ,o> 
an" + ai~ = ° i aR— + ai~ - °        (5'32) 

apply on both sides of T, and prove that J-2 is continuous. 

Further from Eqs.(?,28) and (5.31) 

(ds - ^o5 lr • °« <?-33) 

In regimes AB, B and BC, the principal stresses are unequal, and 

hence d tfc-.    Therefore s    u 

3dn 

3n = 0. (5,3if) 

The quantities -~ , ^~and ^-M are not proven continuous,and frcru 

Eqs.(5.32) their discontinuities are restricted only by 

[g»U[£].0. (5.35) 

Results governing higher order discontinuities are easily found. 

. 
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Now suppose that v/eak discontinuities at most occur 

in the stress field. The stress d„ must now be prescribed s 
continuous when Eq,(5.3D applies. All three stresses d ,d 

x*   S 
3dv,  0de and x    , together with their tangential derivatives -r^, -z-^ 

QXr\<z 
and -Q^- ,  are continuous across T .    Equations  (5.32)  prove that the 

normal derivatives -—-2 and -g-SS, are  continuous across   T .    The on     on 
only remaining first order derivative of the stresses not yet 

known is —^ , and is given from Eq.(5.28) by 

<*n - 1*0^1  = 0. (5.36) 

The conclusions previously established in respect of r for d_ - 
5 

discontinuities therefore also apply for ^—& - discontinuities. 

Results governing higher order discontinuities are easily found. 

If now in addition -~-2. is prescribed continuous when Eq.(5.3D 
' on 

apolies, then the lowest order partial differential coefficient tfilch 
a2d 

admits discontinuities is  ^ , and this only when Eq.(5.3D 
an" 

applies. 

Thus it appears quite generally that discontinuities 

can occur only if the characteristic condition (5.3D is satisfied. 

|        The stress equations are parabolic for regimes AB and BC with 
I 
\ the a- and p-lines, respectively, as characteristics; and are 

l hyperbolic for regime Bwith the a- and P-lines as characteristics. 

| Case (ii) i .1" t  .1 + . Equation (5.29) shows that 

I: *d 

W£ . i. 

'o^o^n-V) + ^] (dn " J'V^s1 = °*      (^37) 

_ 
. .. 
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The detailed analysis is omitted, and only the essential results 

will be stated.  Note first that regimes A and C cannot meet 

because this would involve the discontinuity of both principal 

stresses.  If r is not in regime B then a strong discontinuity 

in d of )cnown amount always occurs and is accompanied by weak 

discontinuities in the stresses also of known amounts.  If V  is 

in regime B then a strong discontinuity in dg and weak discontin- 

uities in the stresses may occur. 

b)  The velocity equations. 

The velocity equations will now be considered. Let the 

two orthogonal families of lines of maximum shear stress be 

identified through the orthogonal curvilinear co-ordinates y anc* 

6 . A member of one family is then defined by an equation 

6 = const, and is called a y-line; and similarly a member of the 

other family is defined by an equation y = const, and is called 

a 6-line. Then at all points of the stress field, let the 

directions of increasing y and 6 be the internal and external 

bisectors of the directions of increasing a and B„ 

It has been proved that, although vn is continuous 

across F, vg is not necessarily continuous across T. Now such a dis- 

continuity in v when properly regarded must correspond to high 

shear strain-rates near F . Hence as the principal axes of 

stress and strain-rate coincide, P  is either a y- or a 5-line. 

Suppose for the moment that there are strong discon- 

tinuities in the velocity field so that r is either a y- or a 6-line. 

i-*- 
•*"' 
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The velocity component vn, together with its tangential derivative 
dv n 
g^— , are continuous across r. The flew rule (see Eqs.(5»9) 

and (5.10)), except at a singular point, is 

av av .av. avv 
S^/CJ VV • eS^ W " i(hr * aT^ns <"8) 

which implies that 

avc (£ls + £jn)/(£ln . r_s) =2T /(d  _ , 
an   3s   an   as     ns'  n   s VVi17/ 

Equation (5.39) is of course the condition that the principal 

axes of strain-rate and stress coincide. Now in the present 

case 

and hence from Eq.(5.39) 

n   s * 

2In e £ls 
an ~ as 

(5.^0) 

(5AD 

The continuity of d  correctly implies that of 0 .  The law of 

mass conservation (see Eq.(5.11)) gives 

avn  avs —- + —- + e = o, an  as   z  ' (5."+2) 

and hence from Eq.(5.'+1) 

an   - as 2 z* (5A3) 

Therefore 

avr 

an" 
.av 
a? [-^] = Ci»]    *-Jte2J, (5.MO 

.. • •••—~_—  ^VJ-'" - g?-: ••••c ;4T-> 1 ^~~~ 
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•-,. 

dv 
and so -.. n 

9V-, 

8n > as 

uous.  Accordingly the quantities 

ana e„ are all either continuous or discontin- 
8v„  3vQ     avT 

and n are not an 'as  "*  an 
proven continuous, and their discontinuities are restricted only 

by Eq,(5.hh).    The discussion of the stress equations has shown 

that if the same value of j applies on both si.d°s of p; then 

there can be no associated discontinuities in the stress field. 

Otherwise Eq.(5.37)« remembering that d  is continuous, shows 
s 

that d = dn + d = d  + df and hence V  is in regime B.  Weak 
up 

discontinuities may now occur in the stress field. 

Now suppose that weak discontinuities at most occur in 

the velocity field.  The velocity vs nmst now be prescribed 

continuous when r is a y~ or o-line. The two velocity components 
8vn 

vn and vs , together with their tangential derivatives r—" and 

avs 
•rr-  , are now continuous across V  , and it follows from Eq.(5.^2) 

that T^r-  and e ^ are either both continuous oi* discontinuous across on      z 
r . More precisely, 

9vn \5M) 

The only remaining first order partial differential coefficients 

of the velocity components not yet considered is 
avc 
an , and in- 

formation concerning this quantity must be found from the flow 

rule.  Now the flow rule (5-38) may be re-written in the form 

&-*CJVV .&->««o-n> .*<&•$?> ->'„ «•*« 

i 

i 

•.'.'••   • •'.' ,i . J 
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where X(non-zero) is an undetermined factor of proportionality. 
6v 

Since Tns and -—^ are continuous across r , the third of Eqs. (5A6) 
5v«j 

shows that •*—- and X are both either continuous or discontinuous 
on 

across r • More precisely, 

6v 
uii      ns 

(5M) 

Let us assume for the r.oment that e  is continuous across P  • 
8v„    Cv- 

Then as both —-£• and ••—-1 are continuous, the first and second of 
3 s     an ' 

Sqs.(5.l+6) show that X(jo0~d ) ar.d X(jd^-d^) are continuous. 
n 

Now  d    is continuous  and so n 

<*0[M]   = OJ  = dn[X] (5.W) 

The quantities j and d are not proven continuous. However if 

j is continuous then the characteristic condition (5.3D applies, 

and r is an a-era 0-line depending on the particular plastic 

regime involved; and if d  is continuous then d  = d  and V  is 
S II    s 

either a v- or a 6-line. On the other hand if e  is discontinuous z 
3v n across V  , then „ 

'     5n 

before.  In this case 

is discontinuous and 
avg 
as is continuous as 

CX(jd-dJ]  --[el,  [X(jd-dn)]=0 o s o n' (5.^9) 

or, alternatively, 

0o[Xj] = [Xds - ezJ = dn[X] . {5.50) 

i 
m\ 

Again the quantities j and d  are not proven continuous. However 

if j is continuous then the characteristic condition (5.3D still 

my 
.-/.  -*• 

' - ' 
".V." 
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applies 5 and if d is continuous then 
9 

**3 

<W[X] " [ez] > (5.5D 

is  t 

and no further statement can be made.  It has therefore been 

proved that strong discontinuities in the stress field may be 

associated with weak discontinuities in the velocity field. 

The essential results are therefore as follows. 

Strong discontinuities in the velocity field can occur only 

across a y- or 6-line, and are not associated with strong dis- 

continuities in the stress field. Weak discontinuities in the 

velocity field may or may not be associated with discontinuities 

in the stress field.  In particular if attention is confined to 

just one plastic regime then in the former case the characteristics 

of the stress and velocity equations coincide whereas in the 

latter case the velocity equations are hyperbolic with the y- 

and 6-lines as characteristics. 

Now that the existence of discontinuities in the 

velocity field has been established it is more straightforward 

to approach the question in terms of the geometry of the cc,p - 

co-ordinate system.  In all cases, for simplicity, attention is 

confined to the case when the same plastic regime applies on 

both sides of P. 

The foil./wing results now follow from the flow rule 

(5.25), and govern weak discontinuities in the velocity field* 

•   '•'•'• 

:•••• 
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Regime C«0J CeBJ 
A -[Cl-q>\] -C4X] 

AB 0 -[X] 

B [MAJ -[(l-q)X] 

BC [XJ 0 * 
C 

l 
[(l-q)X]    |   [q\]          J 

(5.52) 

Here it is supposed that [el and [eg] are not both zero, and 

the results for the three cases follow immediately. 

t-«J 
r     1 1   Regime Conditions 

to *o A,B,C [Xy  [qX] tO 

to 0 A5C 

B 

BC 

[\y0,   [q\] = 0 

[X]=   [QX] t 0 

[X]*3 

0 to A,C 

AB 

B 

[X]=  L^X,] *° 

[X]/0 

MtO  ,   [qX]  = 0 

(5.53) 

Thus if discontinuities in both e_ and eQ occur then regimes AB a     p 

and BC are excluded; if a discontinuity occurs only in ea then 

regime AB is excluded; and if a discontinuity occurs only in e 

then regime BC  is excluded. The conditions under which such 

weak discontinuities in the velocity field may occur have been 

discussed nreviously. 

P 

—,. — 

.<. 

.... . . . 
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Now consider strong discontinuities in the velocity- 

field. Here it is supposed that [v] and [vR] are not both 

zero, and hence at least one of ea and eR becomes very large 

near r. Thus \ must become very largo near P  . Let 

I * 11m I \(n)dn (> 0). J = lim I q(n) X(n)dn (0 < J < I)(5»5]+) 
J J 

where the limit is taken as the thickness of a small region, 

enclosing V and across which the velocity changes sharply, is 

made to tend to zero.  Now r is either a y~ or a 6-line, and 

accordingly the results arc as follows subject to a certain 

convention to be described below. 

Regime ± Oa]/V2 ± [va]/i/5 
r 

A -(I-J) -J 

AB 0 -I 

B J "(I-J) 

BC I 0 
t 

C I-J J 

(5.55) 

I 

If the direction of increasing n lies in the first, second, third 

or fourth gradrants formed by the a- and (J-lines then the 

quantities [v ]/|^ , [vB]/V2 are to be prefixed by both positive, 

negative and positive, both negative, and positive and negative 

signs, respectively. The results for the three cases follow 

immediately. 

I .? --> ~v 
' ;< • • 

?'• •      -.•••--. 
•' ' 

>~" 
Xf^f ^^T"-." * 
- .< "i 

, ; " :•   'm*&  5fe V ' 
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^¥V, 

p1 

[v_] [^ Regime Conditions 

#> /0 A,B,G I ^ J / 0 

/0 0 A,C I A  0, J * 0 

B I = J / 0 

BC I/O 

0 /o A,C I * J A  o 

AB I/O 

B I / 0, J « 0 

(5.56) 

Thus if discontinuities in both v and Vg occur then regimes AB 

and 3C are excluded; if a discontinuity occurs only in va then 

regime AB is excluded; and if a discontinuity occurs only in v« 

then regime BC is excluded.  In all cases the integration of the 

equation of continuity across the line of discontinuity shows 

that 

(5.57) jg  <± [va]± [vp]> = -limjezdn, 

the sign convention being as before and the limit being taken in 

the usual way. Thus as previously noted, e is not in general z 
finite. The remarks made following Eq.(lf.l5) are again applicable 

This completes the discussion of discontinuities in 

the velocity equations. 

It is now possible to take up the point in the analysis 

of the flange equations where discontinuities in jP- and 4* were 

seen to lead to discontinuities in (T „)  *« and (d, )  l, , xy y=su     y.y=5u 

t-,, ••? 

i « 
~r*.'..«*. -*' 

• i 
•.., 
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respectively (see p. 22 ). Clearly the former discontinuity now 

appears to be inadmissible whereas the latter discontinuity is 

admissible if the web edge is an a-cra,6-llne depending on the 

plastic regime. Finally it is necessary to consider discontin- 

uities in the flange axial and angular velocities.  If Up is 

discontinuous  then the velocity component vx in the web must 

also be discontinuous. This can only be accommodated through 

an infinity in the transverse strain-rate e satisfying 

[v„] = - lim e dx , (5.58) 

dVT 
the limit being taken in the usual sense.  If —^-  is discontin- 

av 
uous then the quantity —£ in the web must also be discontinuous, 

Such weak velocity discontinuities in the web have already been 

discussed.  In particular if the plastic regime is continuous 

then the web edge is an cc-craP-line depending on the plastic 

regime. 

The general problem of the integration of the web 

equations subject to various types of boundary conditions will 

not be examined here. However this Section will be concluded 

by showing that the stress and velocity fields possess certain 

very striking properties. These may be compared with certain 

results for plastic plane strain fields (see [ll ]). 

Consider first the regular plastic regimes. 

1) Regime ABs  0 < da < d 0 , do = 0. 

The first of Eqs.(5.20) is immediately integrable, and 

shows that h^d. is at most a function cf p only; i.e. hod is 

_;•'•-' --*'- ' '•'•'_ 
"• - _ * - • 

i 
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constant along an a-linc, but in general the value of this 

constant will vary from one a-line to another.  The other 

equation shows that xa is zero, i.e. the a-lines are straight. 

Therefore x0 = JUl)'(B), and hence p o  is constant along an 
P   hpT ^p a 

a-line. The geometry of the stress field is therefore 

particularly simple, and is shown in Fig, 9(a).  Conversely 

any geometric field of this type may be associated with a stress 

field.  The flow rule equations (5.21*-) and (5.25) show that the 

a-lines are lines of zero rate-of-extension and that 

3Vo Qv    8Vo 

The a-lincs are said to form a 'fan1.  If the evolute of the 

a- lines degenerates to a point then the fan is described as 

•centered'.  In this case choose a and p to be polar co-ordinates 

r and 0 as shown in Fig. 9(b). Thus 

a = r, p = 9, ha = 1, hp = r, *a = 0, pp = r ;   (5.60) 

and the stresses and velocities are given by 

rcJr = f(0) , dQ = 0 , 

vp = g(6) , ve = g'(9) + rh(9) , 

where f, g and h arc arbitrary functions subject only to 

g»(Q) + g(0) + rh'(e) < 0. 

(5.61) 

(5.62) 

•'•ri'::. 

To sum up:  the a-lines are characteristics for the 

stress equations, and are straight linos with zero rate-of- 

:•*> 

.-.•/• 
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extension; and along an o-line the stress a    is proportional 

to the curvature of the B-lines where they cross this a-line. 

2) Regime BC: da = dQ, 0 < dQ < dQ. 

It is straightforward to obtain results similar to 

those aboves  It is found that the 6-lines are straight, and 

that Pa^o^B^ is constant along a 8-line, the value of this 

constant in general varying from one line to another.  The 

geometry of the stress field is shown in Fig. 10(a).  The flow 

rule shows that the B-lines are lines of zero rate-of-extension, 

and that 

av. av avp 
'*«     hTea" + X°VP 2 °  '   YaB " h^OP      CaH      rta"a 

£L, + ^4_ - M„v„ = 0 (5.63) 

The p-lines form a fan, and if this degenerates to a centered fan 

(sec Fig. 10(b)) then the stresses and velocities are given in 

terms of polar co-ordinates r and 0 by 

r(d0-dr) = f(©) , <3_ = d^ , 6 

vr = g(0), vQ = gt(0) + rh(Q), 

where f, g and h are arbitrary functions subject only to 

(5.6*0 

g"(0) + g(©) + rh'(O) > 0 (5.65) 

i 
• 

i 

To sum up:  the 8-lines are characteristics for the 

stress equations, and are straight lines with zero race-of- 

extension$ and along a 3-line the modified stress d0-dg  is 

proportional to the curvature of the a-lines where they cross 

this B-line. 

•  —  

'-.        - I 
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Now consider the singular plastic regimes. 

3) Regime As d„ = dQ= 0. 
 _2 P. , , 

All points in the stress field are isotropic, and 

there are no unique lines of principal stress. 

h)    Regime Bs  d  = d0 , d« = 0. 

The equilibrium equations (5.20) show that x  and xg 

are both zero, i.e. the a- and p-lines are straight. The lines 

of principal stress therefore form a rectangular mesh. 

5) Regime C: d  = dg= £. 

All points in the stress field are isotropic, and there 

are no unique lines of principal stress. 

6.  Wagner Tension-Field Beam Theory. 

It will now be shown that Wagner's tension-field beam 

analysis [2] is a special case of the analysis developed in the 

previous Sections. For simplicity attention will be confined to 

the beam ABCL of Fig. 11 whose function is to transfer shear load 

from the rigid section A3 to the fixed rigid section CD,  The 

flange connections at A,B,C and D are supposed to be pin-jointed. 

Wagner's theory determines the liiiiil load when the design is 

such that collapse occurs through failure only of the web. 

Let the angular velocity of both flanges be u. 

Consider the following velocity field for the web: 

t • 1 i 
v = 0 , v = -ux. (6.1) 

- - '-.• r;l.i 
.. 'ftfcj • - - $k § 
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Then 

x   y    ' 'xy      * = - (*) (6.2) 

and hence the principal axes of strain-rate (and stress) make 

angles of *+5° with the horizontal and vertical directions. Thus 

and as w > 0 it follows that the web is in regime B, i.e., 

(6.3) 

6a   =dc » dft = °« (6.»f) c » «p 

In other words, the waves run at ^5° to the horizontal. Further 

from Eqs.(6.lf) it follows that 

dX = *y = " V " * *0 (6.5) 

xhe equations for the forces and bending moments in the flanges 

are 

dx = ? too  u> dx ± 2      o ~ °» dx " Q  °» (6.6) 

the upper and lower signs corresponding to the upper and lower 

flanges, respectively. The horizontal pull by the web on the end 

AB is £ dQtd, and this must be reacted by compressive forces 

:JtJ0td in each flange. Remembering that M(0) = M(£) = 0 for 

each flange it then follows from Eqs.(6.6) that 

s 

m • 
'FW. 
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F  = + £ td0(-t-x)   - i dQtd,     | 

Q  = ± ± td0M-2x), > 

M = + £ t<30 xM-x). 

(6.7) 

The downwards-acting  shear force applied to the end section AB 

is 

P = £d0td. (6.8) 

The velocity field (6.2) requires that the f"..anges are 

rigid, and hence the yield condition for the flanges is not 

violated. Now M is non-negative and non-positive for the upper 

and lower flanges, respectively.  Thus it is necessaxV that 

F2/P 2 + K/M0 -110, (6.9) 

i.e. 

t2|+(t-x) - £d}2/l6a2b2 + tx(£-x)Aa2b - 1 < 0.   (6.10) 

The maximum value of the left-hand-side of (6.10) occurs when 

x/t =|l - ^ (1 +  Jf)}/(2 - t/2b). (6.11) 

Thus if 

i1-^1 .2 

57 
t  _(1H 

.6a b 

2 + Jd^)J /(: 
-^)>0 (6.12) 

then the beam will fail in shear at the load given by Eq.(6.8), 

An important extension would be to apply the present 

analysis to tapered tension-field beams. 

...   ' :<•. •< - 
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7. Limits of Economy of Material in a Tension-Field Seam. 

Under a given type of loading a given structure 

usually fails in a veil-defined way. A minimum weight 

structure, however, is capable of failing in any one of a 

number of ways. The limits of economy of material in structures 

have not yet been investigated in a system?tie and comprehensive 

manner. Some references to previous work have been given by 

Hopkins and Prager [23 ] . 

One of the immediate steps required in the development 

of the present investigation is to discuss the limits of 

economy of material in a tension-field beam. Some brief 

introductory remarks to this problem will now be given. 

The present discussion will be limited to the beam 

shown in Fig. 11. This beam involves three structural elements, 

viz; the upper and lower flanges and the web. The typo of 

failure that occurs in the beam depends upon the relative 

strength of these elements. For example, if the web is relatively 

weak in comparison with the flanges, then the beam will fail in 

shear according to the Wagner theory as described in the previous 

Ssction, 

Let 

Y =  weight of material per unit volume; 

G =  total weight of beam; and 

AQ , A^ = compression and tension flange cross- 

sectional areas. 

.3. 

' : ' 
••- 
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Then 

= y-tdt I (Ac + At)/dt +1    , 

it being  assumed that A    and A^. are constant.     In the  case 
c     t 

discussed in Section 6 the limit shear load P is j? d0^
t> an<^ 

hence Eq.(7.1) can be written in the form 

More generally the weight may be written in the form 

(7.2) 

(7.3) 

^•jf 

i" 

I 

and the coefficient a will be called the weight factor.  The 

values of y» p and I being fixed, the present problem is to 

determine the values of A , A. , d and t which render the 

weight factor a minimum. The relations (6.12) impose two con- 

ditions.  Other conditions must be found through the study of 

competi.vc modes of collapse, e.g. those in which either the 

upper or the lower flange remains rigid at collapse of the 

beam. The general procedure may be expected to parallel quite 

closely the analysis given in Ref. [ 23 ] , and no further dis- 

cussion of the problem is attempted here. 
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